
Using Data Arising from a SMART 
to Address Primary Aims (Part II)

Module 4



• A taste of how data from a SMART can be analyzed to 
address various scientific questions
o How to frame scientific questions

o Experimental cells to be compared

o Resources you can use for data analysis

General Objectives 



Outline

Review
• ADHD SMART study
• Weighted regression approach for estimating the mean 

outcome under one AI
Learn

• Use weighted regression to compare the mean outcomes for 
two AIs that begin with different treatments

• Use weighted-and-replicated regression to simultaneously
compare all embedded AIs in a SMART
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4 embedded adaptive interventions

PI: Pelham
ADHD SMART

AI #2:
Start with BMOD; 
if non-responder AUGMENT, 
else CONTINUE

AI #1:
Start with MED; 
if non-responder AUGMENT, 
else CONTINUE

AI #3:
Start with MED; 
if non-responder INTENSIFY, 
else CONTINUE

AI #4:
Start with BMOD; 
if non-responder INTENSIFY, 
else CONTINUE



Recall Typical Primary Aim 3

AI #2:
Start with BMOD; 
if non-responder AUGMENT, 
else CONTINUE

AI #1:
Start with MED; 
if non-responder AUGMENT, 
else CONTINUE

vs.

Compare 2 embedded adaptive interventions



This Aim is a Comparison of Mean Outcome 
Under AI #1 vs. mean outcome under AI #2 



We Know How to Account for the Imbalance in 
Non-Responders Following AI #1

Assign W = weight = 2 to responders to MED: 𝟐 × 𝟏

𝟐
= 𝟏

Assign W = weight = 4 to non-responders to MED: 𝟒 × 𝟏

𝟒
= 𝟏

Then we take W-weighted mean of sample who ended up in boxes A & B.



A Similar Approach (and SAS Code) Can be Used 
to Obtain Mean Under AI #2

Assign W = weight = 2 to responders to MED: 𝟐 × 𝟏

𝟐
= 𝟏

Assign W = weight = 4 to non-responders to MED: 𝟒 × 𝟏

𝟒
= 𝟏

Then we take W-weighted mean of sample who ended up in boxes D & E.



Results for Estimated Mean Outcome had All 
Participants Followed AI#2 (BMOD, AUGMENT)

Analysis Of GEE Parameter Estimates
Parameter Estimate Standard Error Pr > |Z|

Intercept 3.0982 0.1070 <.0001

Z1 0.4085 0.1070 0.0001

Contrast Estimate Results

Label
Mean 

Estimate
95% Confidence Limits Standard

Error Pr > ChiSqLower Upper

Mean Y under AI #2 
(BMOD, AUGMENT)

3.5067 3.1643 3.8490 0.1747 <.0001

Interpretation: The estimated mean school performance score for 
children consistent with AI #2 is ~3.51 (95% CI: (3.16, 3.85)). 

This analysis is with simulated data.
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An Intuitive (Yet Less Efficient) Approach to 
Comparing AI#1 vs AI#2



Reminder of Coding Scheme 

A1= 1

R=1A1=-1

R=0

A2=-1

A2= 1

A2= .

A2= .

A2=-1

A2= 1

R=1

R=0



An Intuitive (Yet Less Efficient) Approach to 
Comparing AI#1 vs AI#2

data dat7; set dat1;
Z1=-1; 

if A1=-1 and R=1 then Z1=1; 

if A1=-1 and R=0 and A2=-1 then Z1=1;

Z2=-1; 
if A1= 1 and R=1 then Z2=1; 

if A1= 1 and R=0 and A2=-1 then Z2=1;

W=2*R + 4*(1-R); 
run;

data dat8; 

set dat7; if Z1=1 or Z2=1; 

run;



An Intuitive (Yet Less Efficient) Approach to 
Comparing AI#1 vs AI#2

Create Z1:
Indicator for whether or 
not the person is consistent 
with AI#1 

data dat7; set dat1;
Z1=-1; 

if A1=-1 and R=1 then Z1=1; 

if A1=-1 and R=0 and A2=-1 then Z1=1;

Z2=-1; 
if A1= 1 and R=1 then Z2=1; 

if A1= 1 and R=0 and A2=-1 then Z2=1;

W=2*R + 4*(1-R); 
run;

data dat8; 

set dat7; if Z1=1 or Z2=1; 

run;



An Intuitive (Yet Less Efficient) Approach to 
Comparing AI#1 vs AI#2

Create Z2:
Indicator for whether or 
not the person is consistent 
with AI#2

data dat7; set dat1;
Z1=-1; 

if A1=-1 and R=1 then Z1=1; 

if A1=-1 and R=0 and A2=-1 then Z1=1;

Z2=-1; 
if A1= 1 and R=1 then Z2=1; 

if A1= 1 and R=0 and A2=-1 then Z2=1;

W=2*R + 4*(1-R); 
run;

data dat8; 

set dat7; if Z1=1 or Z2=1; 

run;



An Intuitive (Yet Less Efficient) Approach to 
Comparing AI#1 vs AI#2

Assign weights:
2 for responders
4 for non-responders

data dat7; set dat1;
Z1=-1; 

if A1=-1 and R=1 then Z1=1; 

if A1=-1 and R=0 and A2=-1 then Z1=1;

Z2=-1; 
if A1= 1 and R=1 then Z2=1; 

if A1= 1 and R=0 and A2=-1 then Z2=1;

W=2*R + 4*(1-R); 
run;

data dat8; 

set dat7; if Z1=1 or Z2=1; 

run;



An Intuitive (Yet Less Efficient) Approach to 
Comparing AI#1 vs AI#2

Subset Data:
Keep only participants consistent 
with either AI#1 or AI#2 

data dat7; set dat1;
Z1=-1; 

if A1=-1 and R=1 then Z1=1; 

if A1=-1 and R=0 and A2=-1 then Z1=1;

Z2=-1; 
if A1= 1 and R=1 then Z2=1; 

if A1= 1 and R=0 and A2=-1 then Z2=1;

W=2*R + 4*(1-R); 
run;

data dat8; 

set dat7; if Z1=1 or Z2=1; 

run;



An Intuitive (Yet Less Efficient) Approach to 
Comparing AI#1 vs AI#2

The Regression and Contrast Coding Logic:
Recall:  

Z1 is now an indicator for whether the person is consistent with AI#1 or with AI#2: 
→ Z1 = 1  =  AI#1
→ Z1 = -1 = AI#2

To compare the 2 AIs, we can fit the Model:    

𝐸 𝑌 𝑍1 = 𝛽0 + 𝛽1𝑍1

Overall Mean Y under AI#1   = 𝜷𝟎 + 𝜷𝟏 × 𝟏

Overall Mean Y under AI#2   = 𝜷𝟎 + 𝜷𝟏 × −𝟏

Diff Between AIs = 𝜷𝟎 + 𝜷𝟏 − 𝜷𝟎 − 𝜷𝟏 = 𝟐𝜷𝟏



An Intuitive (Yet Less Efficient) Approach to 
Comparing AI#1 vs AI#2

proc genmod data = dat8;
class id; 
model Y = Z1; 
weight W;
repeated subject = id / type = ind;
estimate 'Mean Y AI#1(MED, Add BMOD)' intercept 1 Z1  1;
estimate 'Mean Y AI#2(BMOD, Add MED)' intercept 1 Z1 -1;
estimate 'Diff: AI#1 - AI#2' Z1  2;

run;

Mean Y under AI#1   = 𝜷𝟎 + 𝜷𝟏 × 𝟏

Mean Y under AI#2   = 𝜷𝟎 + 𝜷𝟏 × −𝟏

Diff Between AIs        = 𝟐𝜷𝟏



An Intuitive (Yet Less Efficient) Approach to 
Comparing AI#1 vs AI#2

Analysis Of GEE Parameter Estimates

Parameter Estimate
Standard 

Error Pr > |Z|
Intercept 3.1858 0.1221 <.0001

Z1 -0.3209 0.1221 0.0086

Contrast Estimate Results

Label
Mean 

Estimate
95% Confidence Limits Standard

Error Pr > ChiSqLower Upper

Mean Y under AI #1 
(MED, AUGMENT)

2.8649 2.5305 3.1992 0.1706 <.0001

Mean Y under AI #2 
(BMOD, AUGMENT)

3.5067 3.1643 3.8490 0.1747 <.0001

Diff: AI#1 – AI#2 -0.6418 -1.1203 -0.1633 0.2442 0.0086

Notice SE
This analysis is with simulated data.



An Intuitive (Yet Less Efficient) Approach to 
Comparing AI#1 vs AI#2

proc genmod data = dat8;

class id; 

model Y = Z1 O12c O14c; 

weight w;

repeated subject = id / type = ind;

estimate 'Mean Y AI#1(MED, AUGMENT)' intercept 1 Z1  1;

estimate 'Mean Y AI#2(BMOD,AUGMENT)' intercept 1 Z1 -1;

estimate 'Diff: AI#1 - AI#2' Z1  2;

run;

Add baseline 
control covariates



An Intuitive (Yet Less Efficient) Approach to 
Comparing AI#1 vs AI#2

Analysis Of GEE Parameter Estimates
Parameter Estimate Standard Error Pr > |Z|

Intercept 3.1858 0.1221 <.0001

Z1 -0.2442 0.1122 0.0295

O12c -0.5153 0.0971 <.0001

O14c 0.4905 0.2774 0.0770

Contrast Estimate Results

Label
Mean 

Estimate
95% Confidence Limits Standard

Error Pr > ChiSqLower Upper

Mean Y under AI #1 2.8842 2.5919 3.1765 0.1491 <.0001
Mean Y under AI #2 3.3727 3.0542 3.6912 0.1625 <.0001
Diff: AI#1 – AI#2 -0.4884 -0.9282 -0.0487 0.2244 0.0295

Notice SE: Slightly smaller compared to 
the analysis without control covariates 

This analysis is with 
simulated data.



Outline

Review
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under one AI
Learn

• Use weighted regression to compare the mean outcomes for two 
AIs that begin with different treatments

• Use weighted-and-replicated regression to simultaneously
compare all embedded AIs in a SMART



What about a Regression to Compare AI#1 (MED, 
AUGMENT) vs…



… AI#2 (BMOD, AUGMENT) vs…



… AI#3 (MED, INTENSIFY) vs…



… AI#4 (BMOD, INTENSIFY), All In One Swoop?



Notice that AI#1 and AI#3 (start MED) Share 
Responders (Box A)



Notice that AI#1 and AI#3 (start MED) Share 
Responders (Box A)



Similarly: AI#2 and AI#4 (start BMOD) Share 
Responders (Box D)



Similarly: AI#2 and AI#4 (start BMOD) Share 
Responders (Box D)



So, What’s Going On?

In this SMART, all responders are consistent with two AIs
• Responders to MED are part of AI#1 and AI#3
• Responders to BMOD are part of AI#2 and AI#4

If our goal is to estimate the mean outcome under all AIs 
simultaneously, 

We must share responders somehow.
• But how?



What Do We Do?

We “trick” SAS into using the responders twice

We do this by replicating responders:
• Create 2 observations for each responder
• We assign half of them A2=1, the other half A2=-1

W=2 to responders and W=4 to non-responders

Robust standard errors account for weighting and the 
fact that responders are “re-used”. No cheating here!



Weighting and Replicating Serve Different 
Purposes

Weighting
• Accounts for over/underrepresentation of responders 

or non-responders
• Because of the randomization scheme

Replicating
• Allows us to use standard software to do simultaneous 

estimation and comparison
• Because participants are consistent with more than 

one AI



SAS Code for Weighting & Replicating to 
Compare Means Under All Four AIs

data dat9; set dat1;
if R=1 then do;

ob = 1; A2 =-1; weight = 2; output; 
ob = 2; A2 = 1; weight = 2; output; 
end;

else if R=0 then do;
ob = 1; weight = 4; output;
end;

run;



Replicated Data

Responders 
are replicated!

Non-Responders 
aren’t!



After Weighting & Replicating: 
SAS Code for the Weighted Regression

The Regression and Contrast Coding Logic:
Recall:  
Our goal is to compare all 4 embedded AIs
We have 2 indicators: A1, A2:

To compare all 4 AIs, we can fit the following model:

𝐸 𝑌 𝐴1, 𝐴2 = 𝛽0 + 𝛽1𝐴1 + 𝛽2𝐴2 + 𝛽3𝐴1𝐴2

A1 A2

1 BMOD 1 INTENSIFY
-1 MED -1 AUGMENT



The Regression and Contrast Coding Logic:

𝐸 𝑌 𝐴1, 𝐴2 = 𝛽0 + 𝛽1𝐴1 + 𝛽2𝐴2 + 𝛽3𝐴1𝐴2

A1 A2

1 BMOD 1 INTENSIFY
-1 MED -1 AUGMENT

AI Mean Y Under AI

1 (MED, AUGMENT) 𝜷𝟎 + 𝜷𝟏 −𝟏 + 𝜷𝟐 −𝟏 + 𝜷𝟑 −𝟏 −𝟏

2 (BMOD, AUGMENT) 𝜷𝟎 + 𝜷𝟏 𝟏 + 𝜷𝟐 −𝟏 + 𝜷𝟑 𝟏 −𝟏

3 (MED, INTENSIFY) 𝜷𝟎 + 𝜷𝟏 −𝟏 + 𝜷𝟐 𝟏 + 𝜷𝟑 −𝟏 𝟏

4 (BMOD, INTENSIFY) 𝜷𝟎 + 𝜷𝟏 𝟏 + 𝜷𝟐 𝟏 + 𝜷𝟑 𝟏 𝟏

After Weighting & Replicating: 
SAS Code for the Weighted Regression



A1 A2

1 BMOD 1 INTENSIFY
-1 MED -1 AUGMENT

The Regression and Contrast Coding Logic:

𝐸 𝑌 𝐴1, 𝐴2 = 𝛽0 + 𝛽1𝐴1 + 𝛽2𝐴2 + 𝛽3𝐴1𝐴2

After Weighting & Replicating: 
SAS Code for the Weighted Regression

AI Mean Y Under AI

1     (-1, -1) 𝜷𝟎 + 𝜷𝟏 −𝟏 + 𝜷𝟐 −𝟏 + 𝜷𝟑 −𝟏 −𝟏

2     ( 1, -1) 𝜷𝟎 + 𝜷𝟏 𝟏 + 𝜷𝟐 −𝟏 + 𝜷𝟑 𝟏 −𝟏

3     (-1,  1) 𝜷𝟎 + 𝜷𝟏 −𝟏 + 𝜷𝟐 𝟏 + 𝜷𝟑 −𝟏 𝟏

4     ( 1,  1) 𝜷𝟎 + 𝜷𝟏 𝟏 + 𝜷𝟐 𝟏 + 𝜷𝟑 𝟏 𝟏



The difference between AI#1 and AI#2:
(𝜷𝟎−𝜷𝟏 − 𝜷𝟐 + 𝜷𝟑) − (𝜷𝟎+𝜷𝟏 − 𝜷𝟐 − 𝜷𝟑) = −𝟐𝜷𝟏 + 𝟐𝜷𝟑

AI Mean Y Under AI

1     (-1, -1) 𝜷𝟎 − 𝜷𝟏 − 𝜷𝟐 + 𝜷𝟑

2     ( 1, -1) 𝜷𝟎 + 𝜷𝟏 − 𝜷𝟐 − 𝜷𝟑

3     (-1,  1) 𝜷𝟎 − 𝜷𝟏 + 𝜷𝟐 − 𝜷𝟑

4     ( 1,  1) 𝜷𝟎 + 𝜷𝟏 + 𝜷𝟐 + 𝜷𝟑

The Regression and Contrast Coding Logic:

𝐸 𝑌 𝐴1, 𝐴2 = 𝛽0 + 𝛽1𝐴1 + 𝛽2𝐴2 + 𝛽3𝐴1𝐴2

After Weighting & Replicating: 
SAS Code for the Weighted Regression



proc genmod data = dat9;
class id;
model Y = A1 A2 A1*A2;
weight weight;
repeated subject = id / type = ind;
estimate ‘MeanY:AI#1(MED,AUGMENT) ’ int 1 A1 -1 A2 -1 A1*A2  1;
estimate ‘MeanY:AI#2(BMOD,AUGMENT)’ int 1 A1  1 A2 -1 A1*A2 -1;
estimate ‘MeanY:AI#3(MED,INTENSFY)’ int 1 A1 -1 A2  1 A1*A2 -1;
estimate ‘MeanY:AI#4(BMOD,INTNSFY)’ int 1 A1  1 A2  1 A1*A2  1;
estimate ‘  Diff: AI#1 - AI#2     ’ int 0 A1 -2 A2  0 A1*A2  2;
estimate ‘  Diff: AI#1 - AI#3     ’ int 0 A1  0 A2 -2 A1*A2  2;
estimate ‘  Diff: AI#1 - AI#4     ’ int 0 A1 -2 A2 -2 A1*A2  0; 

*etc...;
run;

After Weighting & Replicating: 
SAS Code for the Weighted Regression



proc genmod data = dat9;
class id;
model Y = A1 A2 A1*A2;
weight weight;
repeated subject = id / type = ind;
estimate ‘MeanY:AI#1(MED,AUGMENT) ’ int 1 A1 -1 A2 -1 A1*A2  1;
estimate ‘MeanY:AI#2(BMOD,AUGMENT)’ int 1 A1  1 A2 -1 A1*A2 -1;
estimate ‘MeanY:AI#3(MED,INTENSFY)’ int 1 A1 -1 A2  1 A1*A2 -1;
estimate ‘MeanY:AI#4(BMOD,INTNSFY)’ int 1 A1  1 A2  1 A1*A2  1;
estimate ‘  Diff: AI#1 - AI#2     ’ int 0 A1 -2 A2  0 A1*A2  2;
estimate ‘  Diff: AI#1 - AI#3     ’ int 0 A1  0 A2 -2 A1*A2  2;
estimate ‘  Diff: AI#1 - AI#4     ’ int 0 A1 -2 A2 -2 A1*A2  0; 

*etc...;
run;

Estimate Difference:
Diff AI #1 – AI # 2 = −2𝛽1 + 2𝛽3

After Weighting & Replicating: 
SAS Code for the Weighted Regression



Contrast Estimate Results

Label
Mean 

Estimate
95% Confidence Limits Standard

ErrorLower Upper

Mean Y under AI #1 (MED, AUGMENT) 2.8649 2.5305 3.1992 0.1706

Mean Y under AI #2 (BMOD, AUGMENT) 3.5067 3.1643 3.8490 0.1747

Mean Y under AI #3 (MED, INTENSIFY) 2.7895 2.4644 3.1145 0.1658

Mean Y under AI #4 (BMOD, INTENSIFY) 2.6533 2.2515 3.0552 0.2050

Diff: AI#1 – AI#2 -0.6418 -1.1203 -0.1633 0.2442

Diff: AI#1 – AI#3 0.0754 -0.3106 0.4614 0.1969

Diff: AI#1 – AI#4 0.2115 -0.3112 0.7343 0.2667

Diff: AI#2 – AI#3 0.7172 0.2451 1.1893 0.2409

Results for Weighted & Replicated Regression:
Comparing Mean Outcome for all AIs Simultaneously

45

NOTE: We get the exact same results as before when we 
compared AI#1 vs AI#2, but now we can simultaneously 
make inference for all the comparisons.

This analysis is with simulated data.



But wait!...
There’s More to Weighted & Replicated 

Regression Than Just Convenience!



Weighted & Replicated Regression is More 
Efficient Statistically

proc genmod data = dat9;
class id;
model Y = A1 A2 A1*A2 O12c O14c;
weight weight;
repeated subject = id / type = ind;
estimate ‘MeanY:AI#1(MED,AUGMENT) ’ int 1 A1 -1 A2 -1 A1*A2  1;
estimate ‘MeanY:AI#2(BMOD,AUGMENT)’ int 1 A1  1 A2 -1 A1*A2 -1;
estimate ‘MeanY:AI#3(MED,INTENSFY)’ int 1 A1 -1 A2  1 A1*A2 -1;
estimate ‘MeanY:AI#4(BMOD,INTNSFY)’ int 1 A1  1 A2  1 A1*A2  1;
estimate ‘  Diff: AI#1 - AI#2     ’ int 0 A1 -2 A2  0 A1*A2  2;
estimate ‘  Diff: AI#1 - AI#3     ’ int 0 A1  0 A2 -2 A1*A2  2;
estimate ‘  Diff: AI#1 - AI#4     ’ int 0 A1 -2 A2 -2 A1*A2  0; 

*etc...;
run;

Improve power:
Adjusting for baseline 
covariates that are associated 
with outcome leads to more 
efficient estimates (lower 
standard error = more power = 
smaller p-value).



Contrast Estimate Results

Label
Mean 

Estimate
95% Confidence Limits Standard

ErrorLower Upper

Mean Y under AI #1 (MED, AUGMENT) 2.8801 2.5869 3.1733 0.1496

Mean Y under AI #2 (BMOD, AUGMENT) 3.3854 3.0689 3.7018 0.1614

Mean Y under AI #3 (MED, INTENSIFY) 2.8149 2.5163 3.1135 0.1524

Mean Y under AI #4 (BMOD, INTENSIFY) 2.7338 2.3596 3.1081 0.1909

Diff: AI#1 – AI#2 -0.5053 -0.9401 -0.0704 0.2219

Diff: AI#1 – AI#3 0.0652 -0.2811 0.4115 0.1767

This analysis is with simulated data.

Improved efficiency: Adjusting for baseline covariates resulted 
in lower standard error and tighter confidence intervals. Point 
estimates remained about the same, as expected. 

SE in unadjusted model was 0.2442

Weighted & Replicated Regression is More 
Efficient Statistically
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Contrast Estimate Results

Label
Mean 

Estimate
95% Confidence Limits Standard

ErrorLower Upper

Mean Y under AI #1 (MED, AUGMENT) 2.8801 2.5869 3.1733 0.1496

Mean Y under AI #2 (BMOD, AUGMENT) 3.3854 3.0689 3.7018 0.1614

Mean Y under AI #3 (MED, INTENSIFY) 2.8149 2.5163 3.1135 0.1524

Mean Y under AI #4 (BMOD, INTENSIFY) 2.7338 2.3596 3.1081 0.1909

Diff: AI#1 – AI#2 -0.5053 -0.9401 -0.0704 0.2219

Diff: AI#1 – AI#3 0.0652 -0.2811 0.4115 0.1767

This analysis is with simulated data.

SE in unadjusted model was 0.2442
SE in adjusted model including only 
data from participants in AI #1 and AI # 
2 was 0.2244

Weighted & Replicated Regression is More 
Efficient Statistically
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