Using Data Arising from a SMART to Address Primary Aims (Part II)

Module 4

General Objectives

- A taste of how data from a SMART can be analyzed to address various scientific questions
 - How to frame scientific questions
 - Experimental cells to be compared
 - Resources you can use for data analysis

Outline

Review

- ADHD SMART study
- Weighted regression approach for estimating the mean outcome under one AI

Learn

- Use weighted regression to compare the mean outcomes for two AIs that begin with different treatments
- Use weighted-and-replicated regression to simultaneously compare all embedded AIs in a SMART

Outline

Review

- ADHD SMART study
- Weighted regression approach for estimating the mean outcome under one AI

Learn

- Use weighted regression to compare the mean outcomes for two AIs that begin with different treatments
- Use weighted-and-replicated regression to simultaneously compare all embedded AIs in a SMART

ADHD SMART

PI: Pelham

ADHD SMART

PI: Pelham

4 embedded adaptive interventions

AI #1:

Start with MED; if non-responder AUGMENT, else CONTINUE

AI #3:

Start with MED; if non-responder INTENSIFY, else CONTINUE

AI #2:

Start with BMOD; if non-responder AUGMENT, else CONTINUE

AI #4:

Start with BMOD; if non-responder INTENSIFY, else CONTINUE

Recall Typical Primary Aim 3

Compare 2 embedded adaptive interventions

AI #1:

Start with MED; if non-responder AUGMENT, else CONTINUE

VS.

AI #2:

Start with BMOD; if non-responder AUGMENT, else CONTINUE

This Aim is a Comparison of Mean Outcome Under AI #1 vs. mean outcome under AI #2

We Know How to Account for the Imbalance in Non-Responders Following AI #1

Assign W = weight = 2 to responders to MED: $2 \times \frac{1}{2} = 1$

Assign W = weight = 4 to non-responders to MED: $4 \times \frac{1}{4} = 1$

Then we take W-weighted mean of sample who ended up in boxes A & B.

A Similar Approach (and SAS Code) Can be Used to Obtain Mean Under AI #2

Assign W = weight = 2 to responders to MED: $2 \times \frac{1}{2} = 1$

Assign W = weight = 4 to non-responders to MED: $4 \times \frac{1}{4} = 1$

Then we take W-weighted mean of sample who ended up in boxes D & E.

Results for Estimated Mean Outcome had All Participants Followed AI#2 (BMOD, AUGMENT)

Analysis Of GEE Parameter Estimates					
Parameter	Estimate	Standard Error	Pr > Z 		
Intercept	3.0982	0.1070	<.0001		
Z1	0.4085	0.1070	0.0001		

Contrast Estimate Results					
Label	Mean Estimate	Lower	Upper	Standard Error	Pr > ChiSq
Mean Y under AI #2 (BMOD, AUGMENT)	3.5067	3.1643	3.8490	0.1747	<.0001

Interpretation: The estimated mean school performance score for children consistent with AI #2 is ~3.51 (95% CI: (3.16, 3.85)).

This analysis is with simulated data.

Outline

Review

- ADHD SMART study
- Weighted regression approach for estimating the mean outcome under one AI

Learn

- Use weighted regression to compare the mean outcomes for two AIs that begin with different treatments
- Use weighted-and-replicated regression to simultaneously compare all embedded AIs in a SMART

Reminder of Coding Scheme


```
data dat7; set dat1;
Z1 = -1;
  if A1=-1 and R=1
                               then Z1=1;
  if A1=-1 and R=0 and A2=-1 then Z1=1;
Z2=-1;
  if A1= 1 and R=1
                               then Z2=1;
  if A1= 1 and R=0 and A2=-1 then Z2=1;
W=2*R + 4*(1-R);
run;
data dat8;
  set dat7; if Z1=1 or Z2=1;
run;
```

```
data dat7; set dat1;
Z1 = -1;
                               then Z1=1;
 if A1=-1 and R=1
 if A1=-1 and R=0 and A2=-1 then Z1=1;
Z2=-1;
  if A1=1 and R=1
                               then Z2=1;
  if A1= 1 and R=0 and A2=-1 then Z2=1;
W=2*R + 4*(1-R);
run;
data dat8;
  set dat7; if Z1=1 or Z2=1;
run;
```

Create Z1:

Indicator for whether or not the person is consistent with AI#1

```
data dat7; set dat1;
Z1 = -1;
  if A1=-1 and R=1
                                 then Z1=1;
  if A1=-1 and R=0 and A2=-1 then Z1=1;
                                             Create Z2:
Z2 = -1;
                                            Indicator for whether or
 if A1= 1 and R=1
                                             not the person is consistent
 if A1= 1 and R=0 and A2=-1 then Z2=1; with AI#2
W=2*R + 4*(1-R);
run;
data dat8;
  set dat7; if Z1=1 or Z2=1;
```

run;

```
data dat7; set dat1;
Z1 = -1;
  if A1=-1 and R=1
                                 then Z1=1;
  if A1=-1 and R=0 and A2=-1 then Z1=1;
Z2=-1;
  if A1=1 and R=1
                                 then Z2=1;
  if A1= 1 and R=0 and A2=-1 then Z2=1;
                                             Assign weights:
                                             2 for responders
W=2*R + 4*(1-R);
                                             4 for non-responders
run;
```

```
data dat8;
  set dat7; if Z1=1 or Z2=1;
run;
```



```
data dat8;
  set dat7; if Z1=1 or Z2=1;
run;
```

Subset Data:

Keep only participants consistent with either AI#1 or AI#2

The Regression and Contrast Coding Logic:

Recall:

Z1 is now an indicator for whether the person is consistent with AI#1 or with AI#2:

$$\rightarrow$$
 Z₁ = 1 = AI#1

$$\rightarrow$$
 Z₁ = -1 = AI#2

To compare the 2 AIs, we can fit the Model:

$$E(Y|Z_1) = \beta_0 + \beta_1 Z_1$$

Overall Mean Y under AI#1 = $\beta_0 + \beta_1 \times 1$

Overall Mean Y under AI#2 = $\beta_0 + \beta_1 \times -1$

Diff Between AIs =
$$\beta_0 + \beta_1 - (\beta_0 - \beta_1) = 2\beta_1$$

```
proc genmod data = dat8;
  class id;
  model Y = Z1;
  weight W;
  repeated subject = id / type = ind;
  estimate 'Mean Y AI#1(MED, Add BMOD)' intercept 1 Z1 1;
  estimate 'Mean Y AI#2(BMOD, Add MED)' intercept 1 Z1 -1;
  estimate 'Diff: AI#1 - AI#2' Z1 2;
run;
```

```
Mean Y under AI#1 = \beta_0 + \beta_1 \times 1

Mean Y under AI#2 = \beta_0 + \beta_1 \times -1

Diff Between AIs = 2\beta_1
```

Analysis Of GEE	Parameter Estimates
------------------------	----------------------------

Parameter	Standard Estimate Error Pr > Z				
Intercept	3.1858	0.1221	<.0001		
Z1	-0.3209	0.1221	0.0086		

Contrast Estimate Results

	Mean	95% Confidence Limits		Standard	
Label	Estimate	Lower	Upper	Error	Pr > ChiSq
Mean Y under AI #1 (MED, AUGMENT)	2.8649	2.5305	3.1992	0.1706	<.0001
Mean Y under AI #2 (BMOD, AUGMENT)	3.5067	3.1643	3.8490	0.1747	<.0001
Diff: AI#1 – AI#2	-0.6418	-1.1203	-0.1633	0.2442	0.0086

This analysis is with simulated data.


```
proc genmod data = dat8;
  class id;
  model Y = Z1 012c 014c;
  weight w;
  repeated subject = id / type = ind;
  estimate 'Mean Y AI#1(MED, AUGMENT)' intercept 1 Z1 1;
  estimate 'Mean Y AI#2(BMOD, AUGMENT)' intercept 1 Z1 -1;
  estimate 'Diff: AI#1 - AI#2' Z1 2;
run;
```

Analysis Of GEE Parameter Estimates						
Parameter Estimate Standard Error Pr > Z						
Intercept	3.1858	0.1221	<.0001			
Z 1	-0.2442	0.1122	0.0295			
O12c	-0.5153	0.0971	<.0001			
O14c	0.4905	0.2774	0.0770			

Contrast Estimate Results

	Mean	95% Confidence Limits		_ Standard	
Label	Estimate	Lower	Upper	Error	Pr > ChiSq
Mean Y under AI #1	2.8842	2.5919	3.1765	0.1491	<.0001
Mean Y under AI #2	3.3727	3.0542	3.6912	0.1625	<.0001
Diff: AI#1 – AI#2	-0.4884	-0.9282	-0.0487	0.2244	0.0295

This analysis is with simulated data.

Notice SE: Slightly smaller compared to the analysis without control covariates

Outline

Review

- ADHD SMART study
- Weighted regression approach for estimating the mean outcome under one AI

Learn

- Use weighted regression to compare the mean outcomes for two AIs that begin with different treatments
- Use weighted-and-replicated regression to simultaneously compare all embedded AIs in a SMART

What about a Regression to Compare AI#1 (MED, AUGMENT) vs...

... AI#2 (BMOD, AUGMENT) vs...

... AI#3 (MED, INTENSIFY) vs...

... AI#4 (BMOD, INTENSIFY), All In One Swoop?

Notice that AI#1 and AI#3 (start MED) Share Responders (Box A)

Notice that AI#1 and AI#3 (start MED) Share Responders (Box A)

Similarly: AI#2 and AI#4 (start BMOD) Share Responders (Box D)

Similarly: AI#2 and AI#4 (start BMOD) Share Responders (Box D)

So, What's Going On?

In this SMART, all responders are consistent with two AIs

- Responders to MED are part of AI#1 and AI#3
- Responders to BMOD are part of AI#2 and AI#4

If our goal is to estimate the mean outcome under all AIs simultaneously,

We must share responders somehow.

But how?

What Do We Do?

We "trick" SAS into using the responders twice

We do this by replicating responders:

- Create 2 observations for each responder
- We assign half of them A2=1, the other half A2=-1

W=2 to responders and W=4 to non-responders

Robust standard errors account for weighting and the fact that responders are "re-used". No cheating here!

Weighting and Replicating Serve Different Purposes

Weighting

- Accounts for over/underrepresentation of responders or non-responders
- Because of the randomization scheme

Replicating

- Allows us to use standard software to do simultaneous estimation and comparison
- Because participants are consistent with more than one AI

SAS Code for Weighting & Replicating to Compare Means Under All Four Als

```
data dat9; set dat1;
  if R=1 then do;
    ob = 1; A2 =-1; weight = 2; output;
    ob = 2; A2 = 1; weight = 2; output;
  end;

else if R=0 then do;
    ob = 1; weight = 4; output;
  end;
run;
```

Replicated Data

Obs	ID	A1	R	A2	Υ	o11c	o12c	о13с	o14c	ob	weight
45	32	1	1	-1	5	-0.35333	-2.73889	-0.31333	0.19333	1	2
46	32	1	1	1	5	-0.35333	-2.73889	-0.31333	0.19333	2	2
47	33	1	0	1	3	0.64667	<u>-1</u> .07820	0.68667	0.19333	1	4
48	34	1	0	1		Responder		-0.31333	0.19333	1	4
49	35	1	0	-1	ar	e replicate	.58276	-0.31333	0.19333	1	4
50	36	-1	0	1	1	0.64667	-0.03527	-0.31333	0.19333	1	4
51	37	-1	1	-1	1	-0.35333	0.99556	-0.31333	0.19333	1	2
52	37	-1	1	1	1	-0.35333	0.99556	-0.31333	0.19333	2	2
53	38	-1	0	-1	3	-0.35333	0.14034	0.68667	-0.80667	1	4
54	39	-1	1	-	3	0.64667	1.64983	0.68667	0.19333	1	2
55	39	-1	1	1	3	No.	esponders	0.68667	0.19333	2	2

Non-Responders aren't!

The Regression and Contrast Coding Logic:

Recall:

Our goal is to compare all 4 embedded AIs We have 2 indicators: A_1 , A_2 :

	A ₁		\mathbf{A}_{2}
1	BMOD	1	INTENSIFY
-1	MED	-1	AUGMENT

To compare all 4 AIs, we can fit the following model:

$$E(Y|A_1, A_2) = \beta_0 + \beta_1 A_1 + \beta_2 A_2 + \beta_3 A_1 A_2$$

The Regression and Contrast Coding Logic:

$$E(Y|A_1, A_2) = \beta_0 + \beta_1 A_1 + \beta_2 A_2 + \beta_3 A_1 A_2$$

	AI	Mean Y Under AI		
1	(MED, AUGMENT)	$\beta_0 + \beta_1(-1) + \beta_2(-1) + \beta_3(-1)(-1)$		
2	(BMOD, AUGMENT)	$\beta_0 + \beta_1(1) + \beta_2(-1) + \beta_3(1)(-1)$		
3	(MED, INTENSIFY)	$\beta_0 + \beta_1(-1) + \beta_2(1) + \beta_3(-1)(1)$		
4	(BMOD, INTENSIFY)	$\beta_0 + \beta_1(1) + \beta_2(1) + \beta_3(1)(1)$		

	A ₁		A_2		
1	BMOD 1		INTENSIFY		
-1	MED	-1	AUGMENT		

The Regression and Contrast Coding Logic:

$$E(Y|A_1, A_2) = \beta_0 + \beta_1 A_1 + \beta_2 A_2 + \beta_3 A_1 A_2$$

	AI	Mean Y Under AI			
1	(-1, -1)	$\beta_0 + \beta_1(-1) + \beta_2(-1) + \beta_3(-1)(-1)$			
2	(1, -1)	$\beta_0 + \beta_1(1) + \beta_2(-1) + \beta_3(1)(-1)$			
3	(-1, 1)	$\beta_0 + \beta_1(-1) + \beta_2(1) + \beta_3(-1)(1)$			
4	(1, 1)	$\beta_0 + \beta_1(1) + \beta_2(1) + \beta_3(1)(1)$			

	A ₁		A ₂
1	BMOD	1	INTENSIFY
-1	MED	-1	AUGMENT

The Regression and Contrast Coding Logic:

$$E(Y|A_1, A_2) = \beta_0 + \beta_1 A_1 + \beta_2 A_2 + \beta_3 A_1 A_2$$

	AI	Mean Y Under AI
1	(-1, -1)	$\beta_0 - \beta_1 - \beta_2 + \beta_3$
2	(1, -1)	$\beta_0 + \beta_1 - \beta_2 - \beta_3$
3	(-1, 1)	$\beta_0 - \beta_1 + \beta_2 - \beta_3$
4	(1, 1)	$\beta_0 + \beta_1 + \beta_2 + \beta_3$

The difference between AI#1 and AI#2:

$$(\beta_0 - \beta_1 - \beta_2 + \beta_3) - (\beta_0 + \beta_1 - \beta_2 - \beta_3) = -2\beta_1 + 2\beta_3$$


```
proc genmod data = dat9;
 class id;
 model Y = A1 A2 A1*A2;
 weight weight;
 repeated subject = id / type = ind;
 estimate 'MeanY:AI#1(MED,AUGMENT) '
                                    int 1 A1 -1 A2 -1 A1*A2
 estimate 'MeanY:AI#2(BMOD,AUGMENT)'
                                          A1 1 A2 -1 A1*A2
 estimate 'MeanY:AI#3(MED,INTENSFY)' int 1 A1 -1 A2 1 A1*A2
 estimate 'MeanY:AI#4(BMOD,INTNSFY)'
                                    int 1 A1
 estimate ' Diff: AI#1 - AI#2
                                   ' int 0 A1 -2 A2 0 A1*A2
 estimate '
            Diff: AI#1 - AI#3 ' int 0 A1 0 A2 -2 A1*A2
 estimate ' Diff: AI#1 - AI#4 ' int 0 A1 -2 A2 -2 A1*A2
*etc...:
run;
```

```
proc genmod data = dat9;
 class id;
 model Y = A1 A2 A1*A2;
 weight weight;
  repeated subject = id / type = ind;
 estimate 'MeanY:AI#1(MED,AUGMENT) ' int 1 A1 -1 A2 -1 A1*A2 1;
 estimate 'MeanY:AI#2(BMOD,AUGMENT)' int 1 A1 1 A2 -1 A1*A2 -1;
 estimate 'MeanY:AI#3(MED,INTENSFY)' int 1 A1 -1 A2 1 A1*A2 -1;
 estimate 'MeanY:AI#4(BMOD,INTNSFY)' int 1 A1 1 A2 1 A1*A2
 estimate ' Diff: AI#1 - AI#2 ' int 0 A1 -2 A2 0 A1*A2
                                   ' int 0 A1 0 A2 -2 A1*A2
 estimate ' Diff: AI#1 - AI#3
 estimate ' Diff: AI#1 - AI#4
                                   ' int 0 A1 -2 A2 -2 A1*A2
                                                              0;
*etc...:
 run;
```

Estimate Difference:

Diff AI #1 – AI # 2 = $-2\beta_1 + 2\beta_3$

Results for Weighted & Replicated Regression: Comparing Mean Outcome for all AIs Simultaneously

Contrast Estimate Results

	Mean	95% Confi	_ Standard	
Label	Estimate	Lower	Upper	Error
Mean Y under AI #1 (MED, AUGMENT)	2.8649	2.5305	3.1992	0.1706
Mean Y under AI #2 (BMOD, AUGMENT)	3.5067	3.1643	3.8490	0.1747
Mean Y under AI #3 (MED, INTENSIFY)	2.7895	2.4644	3.1145	0.1658
Mean Y under AI #4 (BMOD, INTENSIFY)	2.6533	2.2515	3.0552	0.2050
Diff: AI#1 – AI#2	-0.6418	-1.1203	-0.1633	0.2442
Diff: AI#1 – AI#3	0.0754	-0.3106	0.4614	0.1969
Diff: AI#1 – AI#4	0.2115	-0.3112	0.7343	0.2667

NOTE: We get the exact same results as before when we compared AI#1 vs AI#2, but now we can simultaneously make inference for all the comparisons.

But wait!... There's More to Weighted & Replicated Regression Than Just Convenience!

Weighted & Replicated Regression is More Efficient Statistically

Improve power:

Adjusting for baseline

covariates that are associated

```
with outcome leads to more
proc genmod data = dat9;
  class id;
                                             efficient estimates (lower
  model Y = A1 A2 A1*A2 (012c 014c;)
                                             standard error = more power =
 weight weight;
                                            smaller p-value).
  repeated subject = id / type = ind;
  estimate 'MeanY:AI#1(MED,AUGMENT)
                                       int 1 A1 -1 A2 -1 A1*A2
  estimate 'MeanY:AI#2(BMOD,AUGMENT)'
                                       int 1 A1
                                                 1 A2 -1 A1*A2
  estimate 'MeanY:AI#3(MED,INTENSFY)'
                                       int 1
                                             Α1
                                                -1 A2 1 A1*A2 -1:
  estimate 'MeanY:AI#4(BMOD,INTNSFY)'
                                       int 1 A1 1 A2 1 A1*A2
              Diff: AI#1 - AI#2
  estimate '
                                       int 0 A1
                                                -2 A2 0 A1*A2
 estimate ' Diff: AI#1 - AI#3 ' int 0 A1 0 A2 -2 A1*A2
                                                                 2;
                                       int 0 A1 -2 A2 -2 A1*A2
  estimate '
             Diff: AI#1 - AI#4
                                                                 0:
*etc...;
 run;
```

Weighted & Replicated Regression is More Efficient Statistically

Improved efficiency: Adjusting for baseline covariates resulted in lower standard error and tighter confidence intervals. Point estimates remained about the same, as expected.

Contrast Estimate Results

	Mean	95% Confi	95% Confidence Limits		
Label	Estimate	Lower	Upper	Standard Error	
Mean Y under AI #1 (MED, AUGMENT)	2.8801	2.5869	3.1733	0.1496	
Mean Y under AI #2 (BMOD, AUGMENT)	3.3854	3.0689	3.7018	0.1614	
Mean Y under AI #3 (MED, INTENSIFY)	2.8149	2.5163	3.1135	0.1524	
Mean Y under AI #4 (BMOD, INTENSIFY)	2.7338	2.3596	3.1081	0.1909	
Diff: AI#1 – AI#2	-0.5053	-0.9401	-0.0704	0.2219	
Diff: AI#1 – AI#3	0.0652	-0.2811	0.4115	0.1767	

SE in unadjusted model was **0.2442**

Weighted & Replicated Regression is More Efficient Statistically

Contrast	Fstimate	Recults
CUIILI ast	L 3tilliate	VC20112

	Mean	95% Confi	_ Standard	
Label	Estimate	Lower	Upper	Error
Mean Y under AI #1 (MED, AUGMENT)	2.8801	2.5869	3.1733	0.1496
Mean Y under AI #2 (BMOD, AUGMENT)	3.3854	3.0689	3.7018	0.1614
Mean Y under AI #3 (MED, INTENSIFY)	2.8149	2.5163	3.1135	0.1524
Mean Y under AI #4 (BMOD, INTENSIFY)	2.7338	2.3596	3.1081	0.1909
Diff: AI#1 – AI#2	-0.5053	-0.9401	-0.0704	0.2219
Diff: AI#1 – AI#3	0_0652	-0 2811	0.4115	0 1767

SE in unadjusted model was **0.2442**

SE in adjusted model including only data from participants in AI #1 and AI # 2 was **0.2244**

Citations

- Murphy, S.A. (2005). An experimental design for the development of adaptive interventions. Statistics in Medicine, 24, 1455-1481.
- Nahum-Shani, I., Qian, M., Almirall, D., Pelham, W.E., Gnagy, B., Fabiano, G.A., ... & Murphy, S.A. (2012). Experimental design and primary data analysis methods for comparing adaptive interventions. *Psychological Methods*, 17(4), 457-477.