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1 Overview 
This document describes how to use the qlaci package in R. qlaci implements a 

generalization of Q-learning, a method developed in computer science, to inform the 

development of adaptive interventions. An adaptive intervention is an individualized sequence 

of treatments.  The individualization occurs via decision rules; the decision rules indicate how 

to adjust treatment over time in response to an individual's symptoms, side effects or other 

information.  Q-Learning generalizes standard regression methods for use in developing the 

decision rules underlying an adaptive intervention.  

Here we describe how to use qlaci with data from a sequential, multiple assignment, 

randomized trial (SMART). SMARTs are clinical trial designs that generate high-quality data 

explicitly for the purpose of developing adaptive interventions.  qlaci can be used to analyze 

data from a SMART involving two treatment stages.  

qlaci requires free, open-source, R statistical software, available from http://www.r-

project.org/ 

1.1  Adaptive Interventions 

An adaptive intervention is composed of a sequence of decision rules that specify 

whether, how, or when to alter the intensity, type, or delivery of treatment at decision stages in 

the health care process. Adaptive interventions aim to take advantage of heterogeneity in 

response to treatments in order to maximize individual health outcomes. They do this by 

adapting and re-adapting treatments to the individual, over time, based on observations made 

on the individual. Adaptive interventions are also known as dynamic treatment regimes 

(Robins, 1986; Murphy, Van Der Laan, & Robins, 2001), adaptive treatment strategies (Lavori, 

Dawson, & Rush, 2000; Murphy, 2005), multi-stage treatment strategies (Thall, Sung, & Estey, 

2002), and treatment policies (Lunceford, Davidian, & Tsiatis, 2002; Wahed & Tsiatis, 2004; 

Wahed & Tsiatis, 2006). 

There are three important parts of an adaptive intervention: treatment options, tailoring 

variables, and decision rules. Tailoring variables (information concerning the individual) serve 

as inputs to the decision rules; these variables indicate responsiveness to (or can be used to 

http://www.r-project.org/
http://www.r-project.org/
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determine the need for) treatment type or dosage. Decision rules use the tailoring variables to 

recommend an individualized treatment option. 

There are two types of tailoring variables: baseline and time-varying. Baseline tailoring 

variables may include age, comorbidities, race, gender, treatment history, measures of severity, 

and contextual risk or protective factors. Baseline tailoring variables are observed prior to 

treatment and are used to make the first treatment decision. Time-varying tailoring variables 

are observed during treatment and are used to make subsequent treatment decisions. Because 

we only consider two-stage adaptive interventions in this package, variables observed up to 

and at the end of first-stage treatment are potential time-varying tailoring variables. Potential 

tailoring variables include adherence to first-stage treatment and response to first-stage 

treatment.  An example of a simple adaptive intervention is provided in Figure 1. 

        

First Stage 

 
Second Stage (beginning at 8 weeks) 

 
 
 

 
 
 
 
 
 
 
 

 

Figure 1: An Example Adaptive Intervention. 

If the severity of the patient’s disorder is low,  Provide treatment A 

Else (severity of patient’s disorder is not low), Provide treatment B 

If the patient’s symptoms  are high and 

Switch to other treatment  

Else (patient’s symptoms are not high) maintain current treatment 

If the patient has been non-
adherent 

Else (the patient has been 
adherent), 

 Intensify current treatment 
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In this hypothetical example,  

• patient severity is the baseline tailoring variable,  

• treatments A and B are first-stage treatment options,  

• symptoms and adherence are the time-varying tailoring variables, and 

• intensifying and switching are second-stage treatment options.  

1.2  Sequential, Multiple Assignment, Randomized Trial (SMART) 

The SMART is a clinical trial design in which each individual proceeds through stages of 

treatment. At each treatment stage, individuals are randomized to one of the available 

treatment options at that stage. For example, at the first-stage, all individuals may be 

randomized to treatment A versus treatment B. In the second-stage (following the first-stage 

treatment), responders, non-responders, a subset of responders and/or non-responders, or all 

individuals may be randomized to second-stage treatment options. Randomizations may be 

restricted based on ethical concerns, feasibility, availability, or suitability of different sets of 

treatment options. For more information on SMART, see Murphy (2005), Nahum-Shani et al., 

(2012a), Lei et al., (2012) and Almirall et al., (2012). 

1.3  Q-learning 

 Q-learning (Watkins, 1989; Watkins & Dayan, 1992) is a generalization of regression to 

multiple stages of decision making.  Q-learning, as implemented in qlaci, can be used with data 

from a SMART to help build an optimal adaptive intervention. The optimal adaptive 

intervention should lead to the best sum of the stage 1 outcome and stage 2 outcome. 

In Q-learning, the second-stage regression is implemented first.  The estimated 

regression coefficients are then used to select the best second-stage treatment. Next, using the 

selected second-stage treatment, a first-stage regression is implemented (Nahum-Shani et al., 

2012b). The estimated regression coefficients from the first-stage regression are then used to 

select the best first-stage treatment. The backward ordering of regressions used by Q-learning 

avoids selecting treatment options that appear to be optimal in the short term but may lead to 

an undesirable or less desirable primary outcomes. 
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2 Technical Details 

2.1  Data Structure 

qlaci can be used to analyze longitudinal data arising from a SMART with two decision 

stages. The observed data on each individual are given by trajectory (O1, A1, Y1, O2, S, A2, Y2). Oi, 

for i=1,2 is a set of covariates available at the beginning of the ith stage. Ai denotes the treatment 

options in the ith stage. qlaci requires at most two treatment options at each decision stage; this 

implementation of qlaci requires that Ai is coded as -1 and 1 (contrast coding). S is a binary 

variable coded as 1 if an individual has been rerandomized at stage 2 and 0 otherwise. Y1 is the 

stage 1 outcome observed after the stage 1 treatment and Y2 is the stage 2 outcome, observed 

after stage 1 treatment. This implementation of qlaci assumes that Y1 and Y2 are observed for 

everyone (if there is no Y1 in the study then Y1 should be set to 0) and that both Y1 and Y2 are 

continuous. The vectors O1 and O2 are called baseline covariates and intermediate outcomes, 

respectively. O1 and O2 include candidate baseline and time-varying tailoring variables, 

respectively. Define the history at each stage as H1 = O1 and H2 = (O1, A1, Y1, O2). Note that Y1 can 

be a part of O2 and thus can be a candidate time-varying tailoring variable.  

2.2  Estimation procedures 

In qlaci, the regression coefficients of the fitted models are estimated using the least 

squares method, and the confidence intervals of the parameters are estimated using a bootstrap 

technique developed in Laber and Murphy (2011; see also Laber, Qian, Lizotte, & Murphy, 

2010). 

2.3  Missing Data 

 Missing covariates and/or missing primary outcomes are not permitted. In particular, 

the second-stage regression requires that individuals with S=1 do not have any missing values 

in H2, A2 or the stage 2 outcome Y2. Also, the first-stage regression requires that individuals with 

S=0 do not have any missing data in H1, A1 , Y1 or Y2 (if there is no Y1 in the study then Y1 should 

be set to 0). The variable S also needs to be observed for everyone. 
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3 Q-learning: Statistical Models 
 As implemented by qlaci, Q-learning fits a linear regression model at each decision 

stage. The regressions are fit sequentially starting from the second-stage, working backward to 

the first-stage. At each stage, the estimated regression function is used to evaluate usefulness of 

candidate tailoring variables and to find the treatment option at that stage that maximizes the 

outcome. We explain how Q-learning is applied in studies with two stages. 

To fit the second-stage model, only data from individuals who are re-randomized is 

used. The stage 2 outcome is regressed on the intermediate outcomes, baseline covariates, and 

the first and second-stage treatments; this results in the estimated second-stage regression 

function, Q2. The second-stage treatment option that maximizes the estimated second-stage 

regression function is derived (see below). Next, data from all individuals are used to fit the 

first-stage model by regressing the appropriate outcome (see below) on the baseline covariates 

and the first-stage treatment; this results in the estimated first-stage regression function, Q1. 

Lastly, the first-stage treatment option that maximizes the estimated first-stage regression 

function is derived (see below).  

3.1  Regression Models 

 qlaci uses linear regression models for Q1 and Q2 as follows. 

1. The second-stage model (using the data from individuals who are rerandomized at stage 

2) is  

 2 2 2 21 22 21 21 22 22 2( , ; , ) = ,Q H A H H Aβ β β β+   (0) 

where 21H  and 22H  are vectors of selected covariates from the individual's history at the 

second-stage, 2H . Also, and  are vectors of parameters. 21H  includes a “1” as the first 

element; this is the intercept for the model. 22H  also includes “1” as the first element, so that the 

first parameter in  represents the main effect of the second-stage treatment. The parameters 

of this model are estimated by regressing the stage 2 outcome Y2 on 21 22 2( , )H H A . This results in 

estimators, 21 22
ˆ ˆ,β β and estimated regression function, 
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 The estimated interaction parameters 22β̂  are crucial to identifying the tailoring variables. 

Since, in qlaci, we are using contrast coding (-1,+1) for 2A , the second-stage treatment option 

that maximizes β β2 2 2 21 22
ˆ ˆ( , ; , )Q H A  is derived as follows: if 22 22

ˆ > 0Hβ  then the stage 2 

treatment coded by 1 is the best; if 22 22 0ˆ Hβ <  then the stage 2 treatment coded by -1 is the best.  

This is the stage 2 decision rule. Another way to write this is β=2 2 22 22
ˆ( ) ( )d H sign H . 

From this regression, the estimated stage 2 outcome if the optimal treatment were taken 

at stage 2 is 

 
 

Since 2 { 1, 1}A ∈ − + , the preceding equation can be written as  

   (0) 

The dependent variable for the first-stage regression, , is  

 + + −1 2 2
ˆ (1 ) .optY SY S Y                                  (0) 

Note: In studies with no stage 1 outcome Y1, set Y1=0 for everyone (see the Appendices). 

2.  The first-stage model (fit using data from all individuals) is  

 

1 1 1 11 12 11 11 12 12 1( , ; , ) = ,Q H A H H Aβ β β β+  

 

where 11H  and 12H  are vectors of selected covariates from the individual's baseline data, 1H . 

11H  includes a “1” as the first element; this is the intercept for the model. 12H  also includes “1” 

as the first element, so that the first parameter in 12β  represents the main effect of the first-stage 

treatment. The parameters of this model are estimated by regressing the outcome  on

11 12 1( , )H H A . This results in estimators 11 12
ˆ ˆ,β β  and the estimated regression function 

                                      

Similar to the second-stage, the estimated optimal treatment at the first-stage is as follows: if 
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12 12
ˆ > 0Hβ , then the treatment coded 1 is the best; if 12 12

ˆ < 0Hβ , then the treatment coded -1 is the 

best. This is the stage 1 decision rule.  Another way to write this is β=1 1 12 12
ˆ( ) ( ).d H sign H  

The regression parameters in jQ , for = 1,2j , are consistently estimated (unbiased in large 

samples) if the linear models are correctly specified (Laber, Qian, Lizotte, & Murphy, 2010). 

Confidence intervals for stage 1 and stage 2 parameters are described in section 3.3.  

3.2  Contrast Matrix for First- and Second-Stage Regressions 

qlaci allows users to specify both a stage 1 and a stage 2 contrast matrix. These matrices 

are used to estimate a “contrast,” that is, a linear combination of either the stage 1 or stage 2 

regression parameters. For example, a contrast for stage 1 parameters can be used to estimate 

the mean optimized outcome (mean of 𝑌𝑌�) for individuals with particular covariate values or can 

be used to estimate differences in the mean optimized outcome. The number of columns in 

contrast matrices for stage 1/2 are equal to the number of regression parameters at the stages 

1/2, respectively, and the number of rows is the number of contrasts that a user wishes to 

estimate. Below, we explain how to specify and interpret a contrast matrix for the first-stage 

regression. The second-stage contrast matrix can be specified similarly.  

As an example, suppose the first-stage estimated model is  

11 11 12 12 1
ˆ ˆ ,H H Aβ β+  

where ,  and 1A  is the treatment indicator at the first-stage 

(coded as -1 and +1). Since we have six parameters in this model, the contrast matrix must have 

six columns. In the following example, we decide to estimate four contrasts, so our contrast 

matrix has four rows. Let the 4 6×  contrast matrix 1C  be  

1

1 0 0 1 1 1
1 0 0 1 1 1

=
0 0 0 0 2 2
0 0 0 0 2 0

C

− − 
 
 
 − −
 

− 

 

The first row of 1C  estimates  which is the mean response, , among 

individuals with 11 = 0O , 12 = 0O , 13 = 1O , and 1 = 1A −  (therefore, 1 13 = 1A O − ). The second row 
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of 1C  estimates , which is the mean response, , among individuals with 

11 = 0O , 12 = 0O , 13 = 1O , and 1 = 1A  (therefore, 1 13 = 1A O ). The third contrast estimates the 

difference between the first two contrasts. More specifically, the third row of the 1C  estimates 

 which is the 

difference in mean response between individuals with 1 = 1A −  and 1 = 1A  when 13 = 1O . The 

last row estimates , 

which is the difference in mean response between individuals with 1 = 1A −  and 1 = 1A  when 

11 = 0O , 12 = 0O , 13 = 0O . 

Comparing the estimated contrast obtained from the first and the second rows of this 

matrix allows us to estimate which first-stage treatment is best for individuals with 11 = 0O , 

12 = 0O , 13 = 1O . More specifically, if the mean response given 11 = 0O , 12 = 0O , 13 = 1O , 1 = 1A −  

is greater than the mean response given 11 = 0O , 12 = 0O , 13 = 1O , 1 = 1A + , then the group of 

individuals with characteristics 11 = 0O , 12 = 0O , 13 = 1O  is estimated to benefit more from the 

treatment coded as 1 = 1A −  than from the treatment coded as 1 = 1A . 

The third and fourth contrasts can be used to test whether a group of individuals benefit 

from one treatment option as compared to the other treatment option. If the confidence interval 

corresponding to the contrast in the third row contains zero, then there is no evidence that 

individuals with 11 = 0O , 12 = 0O , and 13 = 1O  respond differently to the two different 

treatments. However, if the confidence interval lies entirely on the positive side of the real line, 

then we can conclude that the treatment coded as -1 leads to a better mean response among 

individuals with 11 = 0O , 12 = 0O , and 13 = 1O , than the treatment coded 1. The last row can be 

interpreted in a similar manner to the third contrast; however this contrast is for the group of 

individuals with 11 = 0O , 12 = 0O , and 13 = 0O . 

Remark: The intermediate variable 13O  can be potentially used to tailor the first-stage treatment 

if the confidence intervals of the two estimated contrasts obtained from the third and last rows 

lie entirely on the different sides of the real line. 



 11 

3.3  Confidence Intervals 

 qlaci uses a bootstrap percentile method to construct confidence intervals for the 

second-stage parameters (Efron & Tibshirani (1993)). Confidence intervals for the parameters in 

the first-stage model 1Q  (see (1)), however, require a generalization of the bootstrap. Recall (see 

(2) and (3)) that the parameters in 1Q  are estimated by regressing on the covariates in 1H . 

Non-differentiability of the absolute value in (2) at zero (when ) can result in poor 

performance of standard bootstrap-based confidence intervals (see Robins, 2004; Moodie and 

Richardson, 2010; and Chakraborty et. al., 2010). 

qlaci uses a bootstrap-based confidence interval called an adaptive confidence interval 

(ACI) developed by Laber et al. (2010) to construct the confidence intervals. The ACI is formed 

by partitioning the individuals in sets for which the estimated stage 2 treatment effect (e.g., 

β22 22
ˆ H ) is near zero and for which the estimated stage 2 effect is far from zero and constructing 

smooth upper and lower bounds using the two partitions. The upper and lower bounds are 

calculated using a grid search method. The number of bootstraps, grid points and the limits of 

the grid search for each parameter are specified by the arguments nb, ngrid and gridscale, 

respectively. Refer to the R help using “?qlaci” command for more information about these 

arguments. The upper and lower bounds are then bootstrapped to form the confidence interval. 

As described in section 3.2, two-sided hypothesis tests can also be performed for the parameters 

of the first-stage model by checking whether the corresponding confidence intervals contain 

zero. 
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4 Example: Simulated SMART for Children With Minimal 

Verbal Ability   

4.1  Design and Data Structure  

 Figure 2 shows an example SMART that might be used to develop an adaptive 

intervention to improve spoken communication in children who are minimally verbal and have 

been diagnosed with autism spectrum disorder (ASD). A data set was simulated of n=200 

children following this SMART design. The simulated data set is called ASDdat.  

To understand the structure of the simulated data, consider the following study design 

features. 

• At stage 1, all children are randomized to either the joint attention/joint engagement 

(JAE) treatment combined with the enhanced milieu teaching (EMT) treatment (coded as 

A1=+1) or the joint attention/joint engagement (JAE) treatment combined with the 

augmentative and alternative communication (AAC) treatment (coded as A1=-1).  

• After 3 months, all children are classified as responders or non-responders to the stage 1 

treatment based on whether they meet a pre-specified criterion for improvement in 

spoken communication.  

• At stage 2, responders continue with their initial treatment for an extra 3 months. 

Children who did not respond to JAE+AAC continue with intensified JAE+AAC. Non-

responders to JAE+EMT are randomized to either JAE+AAC (coded as A2=-1) or 

intensified JAE+EMT (coded as A2=+1).  

• After 6 months, the number of different spontaneous words is assessed (the stage 2 

outcome, Y2).  
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Figure 2: SMART design of the ASD study. AAC = augmentative and alternative communication; EMT = enhanced 

milieu teaching; JAE = joint attention/joint engagement. The “R" with a circle around it denotes randomization. 

  

The simulated data set, called ASDdat, contains a number of measures that can serve as 

baseline tailoring variables for making a stage 1 decision between JAE+EMT vs. JAE+AAC. The 

candidate baseline tailoring variables include  

• O11: Number of different spontaneous words. High values are preferred. This is the same 

measure as the stage 2 outcome Y2, but is measured at baseline.  

• O12: Number of unintelligible utterances by the child. Lower values are preferred.  

The simulated data set also contains candidate time-varying tailoring variables from 

stage 1. These variables can be used, along with the candidate baseline tailoring variables, to 

make a decision between intensifying vs. augmenting treatment among those who are labeled 

as non-responders to initial JAE+EMT. The candidate time-varying tailoring variables include  

• Y1: Number of different spontaneous words is assessed during stage 1 treatment. Higher 

values are preferred. This is the stage 1 outcome. 

• O21: Number of communicative functions by the child (e.g., to request, to initiate a social 

interaction, to direct another’s attention to an object). Higher values are preferred.  

R

JAE+EMT

Response?JAE+EMT Intensified JAE+EMT

JAE+AAC

JAE+AAC

Intensified JAE+AAC
JAE+AAC Response?

R

Yes

No

Yes

No
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Two variables Y1 and O21 are used to assess the response/non-response status. The 

simulated data set includes one additional variable, S, which is the rerandomization indicator. 

Since only non-responders to the first-stage treatment with JAE+EMT are rerandomized at the 

second-stage, only these children's data can be used in the stage 2 regression model. As a result 

S is coded 1 if the child is non-responder to JAE+EMT and is coded 0 otherwise. 

4.2  Models, Contrasts and Codes 

Suppose we decide to fit the following regression models (for clarity, the matrix terms in 

the regression models are written out). 

• Stage 1:  

• Stage 2:  

 The model at stage 1 has only one interaction term involving first-stage treatment (A1) 

(between baseline number of different spontaneous words (O11) and A1); thus, in this illustrative 

analysis O11 is the only candidate baseline tailoring variable. In this example, our goal is to find 

the best stage 1 treatment option for those with low or high number of different spontaneous 

words (where O11≤2 is low and O11≥4 is high). We use the following contrast matrix for the stage 

1 regression model. 

  

# Constructing the contrast matrices for stage 1 

row1<-c(1,2,1,2) # mean 𝑌𝑌� under JAE+EMT for children w/O11 = 2 = low;  

row2<-c(1,2,-1,-2) #mean 𝑌𝑌� under JAE+AAC for children w/O11 = 2 = low;  

row3<-c(0,0,2,4) #mean difference in 𝑌𝑌� for JAE+EMT - JAE+AAC for children 
w/O11 = 2 = low;  

row4<-c(0,0,2,8) #mean difference in 𝑌𝑌� for JAE+EMT - JAE+AAC for children 
w/O11 = 4 = hi;  

c1<-rbind(row1, row2, row3, row4)   

The contrast matrix, c1, has four columns corresponding to the fact that there are four 

parameters in the stage 1 regression and four rows corresponding to the fact that in four 

contrasts are considered. Although omitted below, a stage 2 contrast matrix, c2, can also be 
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formed in order to have qlaci provide confidence intervals for contrasts at stage 2.  

 

The following code presents the qlaci syntax to fit the above stage 1 and 2 regression 

models. 

   

data(ASDdat) 

attach(ASDdat);  

set.seed(300); 

H10<- cbind(1, O11); 

colnames(H10)<-c("int","O11"); 

H11<- cbind(1,O11); #O11 is a candidate tailoring variable for stage 1 

colnames(H11)<-c("A1","A1O11");  

#qlaci automatically multiplies H11 by A1 thus the column names of H11  

#include A1 

H20<- cbind(1, O11,O21); 

colnames(H20)<-c("int","O11","O21"); 

H21<- cbind(1, O21); #O21 is a candidate tailoring variable for stage 2 

colnames(H21)<-c("A2","A2O21");  

#qlaci automatically multiplies H21 by A2 thus the column names of H21  

#include A2 

S<- as.logical(S);  

result1<-qlaci(H10, H11, A1, Y1, H20, H21, A2, Y2, S,c1=t(c1) 

,nb=1000); 

print(result1); 

4.3  qlaci Output 

Table 1 shows the output obtained by running the example qlaci code above using the 

simulated data. The first contrast estimates the mean outcome under JAE+EMT (A1=+1) for 

children when O11=2 (e.g., baseline number of spontaneous words, O11, is low). The second 

contrast estimates the mean 𝑌𝑌�  under JAE+AAC (A1=-1) for children when O11=2. The third 

contrast estimates the effect of JAE+EMT (A1=+1) vs. JAE+AAC (A1=-1) on the mean outcome, 𝑌𝑌� , 

when the baseline number of spontaneous words, O11, is low. The last contrast estimates the 

effect of JAE+EMT (A1=+1) vs. JAE+AAC (A1=-1) on the mean 𝑌𝑌�  when the baseline number of 

spontaneous words, O11, is high. 
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The estimated mean using contrast 1 & 2 suggests that individuals with a low baseline 

number of spontaneous words, O11=2, benefit from starting off on JAE+EMT (56.35-54.00>0) and 

contrast 3 shows that this difference (2.35) is significant since the 95% confidence interval does 

not include zero. The last contrast shows that JAE+AAC significantly improves the final 

outcome for individuals with high baseline number of spontaneous words, O11=4. Since the 

suggested first-stage treatment depends on the value of the variable O11 (low vs. high), this 

analysis indicates that this variable is likely to be a significant baseline tailoring variable. 

  
Table 1. ASD example qlaci output. 
 
 
$stg1coeff 
      int       O11        A1     A1O11  
45.880596  4.648178  6.555096 -2.689879  
 
$stg2coeff 
        int         O11         O21          A2       A2O21  
43.40979346 -3.72296950  0.05873156  1.68595430  0.04902778  
 
$ci1 
           est       low       upp 
row1 56.352290 55.630908 57.093178 
row2 54.001614 52.879513 55.146183 
row3  2.350676  1.077563  3.638551 
row4 -8.408840 -9.441824 -7.379712 
 
$ci2 
NULL 
 

Note that one can construct the individual confidence intervals for the first- and second-

stage coefficients by setting the contrast matrices as 1 = (4)c diag  and 2 = (5)c diag , respectively. 
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5 Appendices 

5.1  Simulated SMART in which all individuals are randomized 

at each stages 

 The simulated data set is called dat2. This simulated SMART involves 200 individuals 

and has the following features (Figure 3).  

• At stage 1, all the individuals are randomized to one of the stage 1 treatment options 

(coded as A1 = ±1).  

 

                      
Figure 3: SMART design in which all individuals are randomized at each stage. The “R" with a circle around it 
denotes randomization. 

 

• All individuals are classified as responders or non-responders to the stage 1 treatment.  

• At stage 2, responders are randomized to either continue with their initial treatment or 

reduce the dose. Non-responders are randomized to either continue with their initial 

treatment or intensify.  

• After stage 2, the final outcome is assessed (Y2).  

In this example, only the final outcome Y2 is assessed and the objective is to learn an 
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adaptive intervention that comes close to maximizing the expected value of the final outcome 

(E[Y2]).  In this study there is no Y1; we set Y1=0 for everyone.      

We fit the following regression models  

• Stage 1:  

• Stage 2:   

where R is a binary variable coded as 1 if responder and 0 otherwise. Since the stage 2 treatment 

options depend on whether or not each individual is labeled a responder, the stage 2 model is 

nested within responders and non-responders. Note that since everyone is randomized at stage 

2, S is equal to one for everyone and the second model is fit among all the individuals. 

 
The following code presents the qlaci syntax to fit the above stage 1 and 2 regression 

models. 

   

data(dat2) 

attach(dat2); 

head(dat2); 

## construct covariates used in the first-stage and the second-stage      

## regression 

 H10<- cbind(1, O11); 

colnames(H10)<-c("int","O11"); 

H11<- cbind(1,O11);  

colnames(H11)<-c("A1","A1O11"); 

Y1<- rep(0,200); # there is no Y1 in this simulated data 

H20<- cbind(1,O11,O21); 

colnames(H20)<-c("int","O11","O21"); 

H21<- cbind(R,R*O21,1-R,(1-R)*O21);  # R=1=responders 

colnames(H21)<-c("A2R","A2RO21","A2(1-R)","A2(1-R)O21");  

Y2<- Y;  

S<- rep(1,200); # everyone is randomized at stage 2 

## Construct contrast matrices 

c1<-diag(4);  #number of rows must be equal to the number of parameters   

              #in the stage 1 model 

c2<-diag(7); #number of rows must be equal to the number of parameters  

             #in the stage 2 model 
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## Run qlaci function to get estimates and confidence intervals for   

##the contrasts 

set.seed(300); 

result2<-qlaci(H10, H11, A1, Y1, H20, H21, A2, Y2, S,c1=t(c1),c2=t(c2) 

,nb=1000);  

# here we used 1000 bootstraps.  

print(result2); 

 

The following table summarizes the output corresponding to this example. 

 

 

 

 
Table 2. dat2 example qlaci output. 
 
 
 
$stg1coeff 
       int        O11         A1      A1O11  
 9.9736728  1.0321597 -1.6113811 -0.3419619  
 
$stg2coeff 
       int        O11        O21        A2R     A2RO21    A2(1-R) A2(1-R)O21  
 6.6386713  0.5972870  1.6897144  1.0626422  1.5863444  3.3274834  0.1768726  
 
 
$ci1 
            est        low         upp 
[1,]  9.9736728  9.5478612 10.43201237 
[2,]  1.0321597  0.5810393  1.46765503 
[3,] -1.6113811 -2.0382856 -1.18664203 
[4,] -0.3419619 -0.6909388  0.01724626 

 
$ci2 
           est        low       upp 
[1,] 6.6386713  6.3038058 6.9640510 
[2,] 0.5972870  0.3044086 0.8920901 
[3,] 1.6897144  1.4719698 1.9270822 
[4,] 1.0626422  0.6982854 1.4800429 
[5,] 1.5863444  1.1850816 2.0064770 
[6,] 3.3274834  2.6981402 3.8890823 
[7,] 0.1768726 -0.1608220 0.5169883 
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5.2 Simulated SMART with no embedded tailoring variable 

The simulated data set is called dat3. This simulated SMART involves 200 individuals 

and has the following features (Figure 4). 

 
Figure 4: SMART design with no embedded tailoring variable. The “R" with a circle around it denotes 

randomization. 

• At stage 1, all the individuals are randomized to one of the stage 1 treatment options 

(coded as A1 = ±1).  

• At stage 2, all the individuals are randomized to one of the stage 2 treatment options 

(coded as A2 = ±1).  

• After stage 2, the outcome is assessed (Y2).  

There is no embedded tailoring variable in this simulated data. Similar to the simulated SMART 

in section 4.2, just the final outcome Y2 is assessed and the objective is to learn an adaptive 

intervention which comes close to maximizing the expected value of the final outcome (E[Y2]). 

Since there is no Y1 in this study, we set Y1=0 for everyone. 
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We fit the following regression models:  

• Stage 1:  

• Stage 2:  

Similar to the example in section 5.1, the second model is fit among all the individuals. 

 

The following code presents the qlaci syntax to fit the above stage 1 and 2 regression 

models. 

 

data(dat3) 

attach(dat3); 

head(dat3); 

## construct covariates used in the first-stage and the second-stage  

##regression 

H10<- cbind(1, O11); 

colnames(H10)<-c("int","O11"); 

H11<- cbind(1,O11); #O11 is a candidate tailoring variable for stage 1 

colnames(H11)<-c("A1","A1O11"); 

Y1<- rep(0,200); # there is no Y1 in this simulated data 

H20<- cbind(1,O11,O21,O22); 

colnames(H20)<-c("int","O11","O21","O22"); 

H21<- cbind(1,O21);  #O21 is a candidate tailoring variable for stage 2 

colnames(H21)<-c("A2","A2O21");  

Y2<- Y;  

S<- rep(1,200); # everyone is randomized at stage 2 

## Construct contrast matrices 

c1<-diag(4);  #number of rows must be equal to the number of parameters  

              ##in the stage 1 model 

c2<-diag(6); #number of rows must be equal to the number of parameters  

             ##in the stage 2 model 

## Run qlaci function to get estimates and confidence intervals for  

##the contrasts  

set.seed(300); 

result3<-qlaci(H10, H11, A1, Y1, H20, H21, A2, Y2, S,c1=t(c1),c2=t(c2) 
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,nb=1000); 

print(result3);  

 

 

 

 

 

 

The following Table summarizes the output corresponding to this example. 

 

 

Table 3. dat3 example qlaci output. 
 
$stg1coeff 
       int        O11         A1      A1O11  
 9.5527575  1.2420832 -1.6283943 -0.4366322  
 
$stg2coeff 
        int         O11         O21         O22          A2       A2O21  
 7.01327606  0.61942202  1.69015898 -0.06039361  0.99006407  1.70521812  
 
 
$ci1 
            est        low          upp 
[1,]  9.5527575  9.0791442 10.042931301 
[2,]  1.2420832  0.7052559  1.740402724 
[3,] -1.6283943 -2.0730089 -1.160290640 
[4,] -0.4366322 -0.8294057 -0.000831816 
 
$ci2 
             est        low       upp 
[1,]  7.01327606  5.6773712 8.2842926 
[2,]  0.61942202  0.3521772 0.8982917 
[3,]  1.69015898  1.4466815 1.9409173 
[4,] -0.06039361 -0.2429888 0.1462929 
[5,]  0.99006407  0.6761274 1.2687471 
[6,]  1.70521812  1.4935963 1.9178780 
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