In response to the US opioid epidemic, significant national campaigns have been launched to expand access to `opioid use disorder (MOUD). While adoption has increased in general medical care settings, specialty addiction programs have lagged in both reach and adoption. Elevating the quality of implementation strategy, research requires more precise methods in tailoring strategies rather than a one-size-fits-all-approach, documenting participant engagement and fidelity to the delivery of the strategy, and conducting an economic analysis to inform decision making and policy. Research has yet to incorporate all three of these recommendations to address the challenges of implementing and sustaining MOUD in specialty addiction programs.


This project seeks to recruit 72 specialty addiction programs in partnership with the Washington State Health Care Authority and employs a measurement-based stepped implementation-to-target approach within an adaptive trial design. Programs will be exposed to a sequence of implementation strategies of increasing intensity and cost: (1) enhanced monitoring and feedback (EMF), (2) 2-day workshop, and then, if outcome targets are not achieved, randomization to either internal facilitation or external facilitation. The study has three aims: (1) evaluate the sequential impact of implementation strategies on target outcomes, (2) examine contextual moderators and mediators of outcomes in response to the strategies, and (3) document and model costs per implementation strategy. Target outcomes are organized by the RE-AIM framework and the Addiction Care Cascade.


This implementation project includes elements of a sequential multiple assignment randomized trial (SMART) design and a criterion-based design. An innovative and efficient approach, participating programs only receive the implementation strategies they need to achieve target outcomes. Findings have the potential to inform implementation research and provide key decision-makers with evidence on how to address the opioid epidemic at a systems level.

Principal Investigator(s): James H. Ford II, PhD, Mark McGovern

Location: UW-Madison

This manuscript was supported by funding from NIDA-funded research (R01DA052975-01A1, Drs. McGovern and Ford, principal investigators).